

Evaluating adaptation scenarios for fishing communities facing climate-driven species changes

Bradley Franklin, Brian Kennedy, Jenny Sun, Katherine Mills, Andrew Allyn, Eric Thunberg

> ECCWO Session 12 June 5, 2018

Science. Education. Community

Species Distribution Models

Cheung et al. (2009)

Morley et al. (2018)

Economic Questions

- What are the potential economic costs of climate-driven changes in distribution of fish species?
- To what degree can adaptation offset these costs/add benefits?
- How can fisheries management facilitate adaptation?

Adding economics to species distribution change

Gulf

Gulf of Maine

Research Institute

Adding economics to species distribution change

Gulf of Maine

Research Institute

Adding economics to species distribution change

Gulf of Maine Research Institute

Integrated Modeling Framework: Port-Level Economics

- Local analysis
 - Multiple activities
 - Fishing patterns
 - Resources available
 - Adaptation strategies

GMRI Integrated Modeling Framework

111

Species Distribution Model: Details

Gulf of Maine Research Institute

AGNETI

- Northeast U.S. Continental Shelf LME
- CMIP 5 Climate Ensemble RCP 8.5 scenario
- 54 species modeled

Species distribution projections for selected species

Localizing change via fishing footprints

Gulf of Maine Research Institute

Problem: Economic model cannot directly use probability of presence.

How to relate presence to catch?

What should catch be for emerging species at a given port?

Relating Presence to Catch

Gulf of Maine Research Institute

One Answer:

• C_t is Catch per trip

- p_t is probability of presence
- α in (0,2) reflects degree of sensitivity of catch to change in presence
- High alpha \rightarrow high sensitivity
- If baseline presence or average catch = 0 (not available or not allowed)

$$C_{t}^{Port} = (p_{t}^{Port} / p_{t-1}^{Region})^{\alpha} * C_{t-1}^{Region}$$

 $C_t = (p_t / p_{t-1})^{\alpha} * C_{t-1}$

Focal Ports

NEW	STONINGTON				
Species	\$ M	% Value	Species	\$ M	% Value
Sea Scallop	239.7	85%	Lobster	52	98%
POINT JUDITH			PORTLAND		
Species	\$ M	% Value	Species	\$ M	% Value
Loligo Squid	8.4	28%	Lobster	13	45%
Lobster	4.8	16%	Herring	7.5	26%
Sea Scallop	4.6	15%	Pollock	2.2	8%
Summer			White		
Flounder	4.2	14%	Hake	2.1	7%
Scup	2.3	8%	Hagfish	1	4%

Defining Fishing Activities

Organization Scheme

Port* Gear Type * Species Targeted

Key Variables

- -# Trips
- -Landings
- -Variable Costs
- Profits

Sample Fishing Activity Matrix: Volume (1,000 lbs) landed

Gulf of Maine Research Institute

350

MAGNETIC

Selected Scenarios

Gulf of Maine Research Institute

- 1. Baseline 2011-2015
- 2. No Adaptation Climate impact when no adaptation measures taken
- 3. Gear Change Changes in fishing effort by gear type
 - Dredge
 - Gillnet
 - Longline
 - Pot/Trap
 - Purse Seine
 - Trawl
- 4. Emerging Species Impact given ability to fish new species
 - Black Sea Bass
 - Squid (Illex & Loligo)
 - Dogfish (Smooth & Spiny)
 - Scup

Results for key ports

2055 Profit Proportional to Baseline (Baseline = 100 in each port)

 Relatively minor impacts in New Bedford and Pt. Judith

Gulf of Maine Research Institute

- Substantial impacts in Portland
- Substantial benefits of adaptation in Stonington

Community Impacts

Scaling economic impacts: fishing sector \rightarrow community \rightarrow region

Input-Output model generates county/regional estimates of changes to:

- Employment
- Income
- Supporting Industries
- Tax Revenue

Conclusions & future work

Conclusions:

- Impacts and adaptation benefits depend on baseline mix of activities
- Key species (lobster, scallop) have large influence on specialist ports
- Not allowing adaptation can overstate impacts
- Supporting new fisheries may be key to adaptation
- Profit levels key to understanding industry health, local impacts

Future improvements:

- Allow adjustment of footprints
- Extend to other ports
- Specify fishing activities in greater detail

